Abstract

Radiation emitted by an electric dipole consists of traveling and evanescent plane waves. Usually, only the traveling waves are observable by a measurement in the far field, since the evanescent waves die out over a length of approximately a wavelength from the source. We show that when the radiation is passed through an interface with a medium with an index of refraction larger than the index of refraction of the embedding medium of the dipole, a portion of the evanescent waves are converted into traveling waves, and they become observable in the far field. The same conclusion holds when the waves pass through a layer of finite thickness. Waves that are transmitted under an angle larger than the so-called anti-critical angle theta (1) ac are shown to originate in evanescent dipole waves. In this fashion, part of the evanescent spectrum of the radiation becomes amenable to observation in the far field. We also show that in many situations the power in the far field coming from evanescent waves greatly exceeds the power originating in traveling waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.