Abstract
The increasing penetration of intermittent energy sources along with the introduction of shiftable load elements renders transmission network expansion planning (TNEP) a challenging task. In particular, the ever-expanding spectrum of possible operating points necessitates the consideration of a very large number of scenarios within a cost-benefit framework, leading to computational issues. On the other hand, failure to adequately capture the behavior of stochastic parameters can lead to inefficient expansion plans. This paper proposes a novel TNEP framework that accommodates multiple sources of operational stochasticity. Inter-spatial dependencies between loads in various locations and intermittent generation units' output are captured by using a multivariate Gaussian copula. This statistical model forms the basis of a Monte Carlo analysis framework for exploring the uncertainty state-space. Benders decomposition is applied to efficiently split the investment and operation problems. The advantages of the proposed model are demonstrated through a case study on the IEEE 118-bus system. By evaluating the confidence interval of the optimality gap, the advantages of the proposed approach over conventional techniques are clearly demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.