Abstract
Wireless transcutaneous power transfer and communication has the potential to reduce the size of implantable medical devices, thereby reducing patient discomfort and minimizing the tissue area exposed to foreign material. Electromagnetic transmission mechanisms through tissue are determined by tissue structure and associated frequency-dependent tissue properties, which are significant in the design of wireless implantable medical devices. The purpose of this study was to investigate the effects of varying tissue dielectric properties on maximum power transfer to a subcutaneously implanted device in a paired electrode system designed for use in proximity to metallic orthopedic implants. The transcutaneous system including external and implanted electrode pairs was simulated at several radio frequencies (125 kHz, 1 MHz, 13.56 MHz, 403 MHz, and 915 MHz) while varying the dielectric properties of the tissue medium over a range of physiological values. Maximum power transfer was calculated to represent the best-case power gain across the range of tissue properties and frequencies, and greater achievable efficiencies were seen with higher quality factor as a function of the tissue properties. The results suggest that in the paired electrode system, utilization of capacitive coupling allows the system to function in proximity to metallic surfaces such as orthopedic implants. The results also suggest that higher power gains are possible through a choice of implant location based on expected tissue properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.