Abstract
A novel Transmission matrix-based Electric field Monte Carlo (TEMC) method is introduced to study the propagation characteristics of Bessel beams with different orbital angular momentum (OAM) in turbid media. As an extension to the Electric field Monte Carlo (EMC) approach, electric field transmission modes were simulated to properly evaluate light interference. Beam transmission patterns, intensity attenuation, and the degree of polarization (DOP) through turbid media of varying thickness were analyzed. It was found that the OAM plays a subtle role in transmission through turbid media, showing only a weak correlation with total transmission, the preservation of DOP, and the penetration depth. The TEMC simulation results were in excellent agreement with experiments, validating the proposed method for the study of coherence phenomenon in turbid media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.