Abstract

In conventional gasoline automobiles, the engine powers the air conditioning system and engine noise can somewhat mask the noise and vibration of the air conditioning system. In pure electric vehicles, however, the absence of an engine makes the air conditioning system’s noise more noticeable, concentrated in a limited frequency range at constant speeds. As a result, aerodynamic noise from the air conditioning system is a primary noise source in electric vehicles. Pipeline silencers are the main method for reducing this noise. The current silencer design uses plane wave acoustic theory but when cavity modal resonance occurs, the transmission loss error is relatively high. This article addresses the issue of non-planar wave cavity resonance, studying the cavity modal of a muffler using the finite element method to reveal the transmission loss under cavity mode resonance. A dual cavity expansion structure of an impedance composite muffler is proposed, with sound-absorbing materials placed in the cavity to enhance acoustic performance. The analysis of the transmission loss characteristics of the impedance composite muffler provides a theoretical basis for noise control in pure electric vehicle air conditioning systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call