Abstract

I discuss the strong link between the transmission line (TL) equation and the TL circuit model for the charging of an electrolyte-filled pore of finite length. In particular, I show how Robin and Neumann boundary conditions to the TL equation, proposed by others on physical grounds, also emerge in the TL circuit subject to a stepwise potential. The pore relaxes with a timescale τ, an expression for which consistently follows from the TL circuit, TL equation, and from the pore's known impedance. An approximation to τ explains the numerically determined relaxation time of the stack-electrode model of Lian etal. [Phys. Rev. Lett. 124, 076001 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.076001].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.