Abstract
In this paper, a trajectory tracking control for a nonholonomic mobile robot subjected to kinematic disturbances is proposed. A variable structure controller based on the sliding mode theory is designed, and applied to compensate these disturbances. To minimize the problems found in practical implementations of the classical variable structure controllers, and eliminate the chattering phenomenon, is used a neural compensator, which is nonlinear and continuous, in lieu of the discontinuous portion of the control signals present in classical forms. This proposed neural compensator is designed by the Gaussian radial basis function neural networks modeling technique and it does not require the time-consuming training process. Stability analysis is guaranteed based on the Lyapunov method. Simulation results are provided to show the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.