Abstract

Transmission immunoelectron microscopy allows for the ultrastructural detection and localization of herpes simplex virus-1 (HSV-1) particles and viral proteins within the infected cell and their relation to the cell cytoskeleton, cellular proteins, vesicles, membranes, and organelles. For the successful application of immunoelectron microscopy, preservation of cell ultrastructure and of epitope antigenicity is essential during sample preparation. This chapter describes the use of chemical fixation followed by rapid cooling of HSV-1 infected sensory neurons in the presence of sucrose as a cryoprotectant to achieve optimal preservation of cell morphology and the use of freeze substitution and resin polymerization at low temperatures for preservation of protein antigenicity. In order to examine HSV-1 infection in the specialized compartments of the neurons (cell body, axons, and growth cones), neurons cultured on plastic coverslips are flat embedded prior to resin polymerization. Overall, this method allows for the ultrathin sectioning and immunogold labeling of the neurons and their axons in growth plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.