Abstract
The Transmission Expansion Planning (TEP) problem aims at identifying a list of equipment, among transmission lines, cables and transformers, that will be installed on the grid over a predefined planning horizon. TEP must also identify the respective periods of installations of the selected pieces-of-equipment to expand the grid. TEP is a mixed-integer non-linear and non-convex problem that requires a huge computational effort to be solved and, for this reason, many authors have been proposing relaxed TEP versions to reduce the mentioned computational burden. In this direction, this paper presents a broad comparison between the relaxed static TEP approach and the complete dynamic TEP. Numerical simulations are conducted using the Garver-6-bus and the RTS-24-bus test systems. The problem is handled by a hybrid tool composed by the Evolutionary Particle Swarm optimization (EPSO) algorithm and a version of Hill-Climbing (HC), besides an AC-optimal power flow model is used to get more realistic operation conditions of the network. Even though dynamic TEP approaches present a higher computational effort, the results show that with this solution approach it is possible to obtain relevant investment savings when compared with the static TEP approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.