Abstract

The a half-wave wall is usually adopted as the transparent window for electromagnetic (EM) waves ranging from microwave to optical regimes. Due to the interference nature, the bandwidth of the half-wave wall is usually quite narrow, especially under extreme angles for TE-polarized waves. It is usually contradictory to expand the bandwidth and to keep high transmission. To overcome this contradiction, we propose to extend the transmission bandwidth of half-wave walls under extreme angles by introducing Lorentz-type resonances using metasurfaces. The impedance of the half-wave wall is firstly analyzed. To improve the impedance matching, the impedance below and above the half-wave frequency should be increased. To this end, metallic wires and I-shaped structures are incorporated into the half-wave wall as the mid-layer. Due to the Lorentz-type resonance of the metallic wire, effective permittivity below the half-wave frequency can be reduced while that above the half-wave frequency can be increased due to Lorentz-type resonance of the I-shaped structures, both under large incident angles. In this way, the impedance matching, and thus the transmission, can be improved within an extended band. A proof-of-principle prototype was designed, fabricated, and measured to verify this strategy. Both simulated and measured results show that the prototype can operate in 14.0-19.0GHZ under incident angle [70°, 85°] with significant transmission enhancement for TE-polarized waves. This work provides an effective method of enhancing the transmission of EM waves and may find applications in radomes, IR windows, and others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call