Abstract

This paper investigates the transmission energy minimization problem for the two-user downlink with strictly heterogeneous latency constraints. To cope with the latency constraints and to explicitly specify the trade-off between blocklength (latency) and reliability the normal approximation of the capacity of finite blocklength codes (FBCs) is adopted, in contrast to the classical Shannon capacity formula. We first consider the non-orthogonal multiple access (NOMA) based transmission scheme. However, due to heterogeneous latency constraints and channel conditions at receivers, the conventional successive interference cancellation may be infeasible. We thus study the problem by considering heterogeneous receiver conditions under different interference mitigation schemes and solve the corresponding NOMA design problems. It is shown that, though the energy function is not convex and does not have closed form expression, the studied NOMA problems can be globally solved semi-analytically and with low complexity. Moreover, we propose a hybrid transmission scheme that combines the time division multiple access (TDMA) and NOMA. Specifically, the hybrid scheme can judiciously perform bit and time allocation and take TDMA and NOMA as two special instances. To handle the more challenging hybrid design problem, we propose a concave approximation of the FBC rate/capacity formula, by which we obtain computationally efficient and high-quality solutions. Simulation results show that the hybrid scheme can achieve considerable transmission energy saving compared with both pure NOMA and TDMA schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.