Abstract

Epitaxial Srn+1TinO3n+1 thin films with n = 1–5 were synthesized on (001) SrTiO3 substrates by reactive molecular beam epitaxy. The structure and microstructure of the films were investigated by x-ray diffraction, transmission electron microbeam diffraction, and high-resolution transmission electron microscopy (HRTEM) in combination with computer image simulations. Both diffraction and HRTEM studies revealed that all the films are epitaxially oriented with their c axis perpendicular to the (001) SrTiO3 plane of the substrate. Detailed investigations using quantitative HRTEM methods indicated that the films have the expected n = 1–5 structures of the Ruddlesden–Popper Srn+1TinO3n+1 homologous series. Among these films, Sr2TiO4, Sr3Ti2O7, and Sr4Ti3O10 thin films are nearly free of intergrowths, while Sr5Ti4O13 and Sr6Ti5O16 thin films contain noticeably more antiphase boundaries in their perovskite sheets and intergrowth defects. We show that these results are consistent with what is known about the thermodynamics of Srn+1TinO3n+1 phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.