Abstract

Abstract Amorphous carbon (a-C) films with high contents of tetrahedral carbon bonding (sp3) were synthesized on smooth Si(100) surfaces by cathodic arc deposition. Before diamond growth, the a-C films were pretreated with a low-temperature methane-rich hydrogen plasma in a microwave plasma-enhanced chemical vapor deposition system. The evolution of the morphology and microstructure of the a-C films during the pretreatment and subsequent diamond nucleation and initial growth stages was investigated by high-resolution transmission electron microscopy (TEM). Carbon-rich clusters with a density of ∼1010 cm−2 were found on pretreated a-C film surfaces. The clusters comprised an a-C phase rich in sp3 carbon bonds with a high density of randomly oriented nanocrystallites and exhibited a high etching resistance to hydrogen plasma. Selected area diffraction patterns and associated dark-field TEM images of the residual clusters revealed diamond fingerprints in the nanocrystallites, which played the role of diamond nucleation sites. The presence of non-diamond fingerprints indicated the formation of Si–C-rich species at C/Si interfaces. The predominantly spherulitic growth of the clusters without apparent changes in density yielded numerous high surface free energy diamond nucleation sites. The rapid evolution of crystallographic facets in the clusters observed under diamond growth conditions suggested that the enhancement of diamond nucleation and growth resulted from the existing nanocrystallites and the crystallization of the a-C phase caused by the stabilization of sp3 carbon bonds by atomic hydrogen. The significant increase of the diamond nucleation density and growth is interpreted in terms of a simple three-step process which is in accord with the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.