Abstract

Abstract It is widely appreciated that the study of (man-made) nanomaterials is a new frontier in materials science, but it is not well appreciated that (natural) nanomaterials represent a new frontier in meteoritics and planetary science [1]. During the next decade the nanogram to microgram quantities of extraterrestrial materials will be returned to Earth from a variety of solar system bodies including comets [2]. Studies of cometary interplanetary dust particles (IDPs) collected in the stratosphere, as well as mass spectrometry data from grains analyzed in-situ at comet Halley, suggest that the returned comet samples will be heterogeneous on a scale of nanometers [3, 4]. (A single 5-10μm diameter IDP may contain >106 individual grains and many different minerals (metal, carbonaceous phases, silicates, sulfides, etc.)). More recent observations of dust around stars, in interplanetary space, and at comet Hale-Bopp indicate that the predominant astronomical grain size is in the nanometer to submicrometer size range [5,6].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.