Abstract

Structural investigations of high quality Si/Ge strained-layer superlattices (SLSs) on [001] oriented Ge substrates prepared by molecular beam epitaxy are presented. Cross-sectional transmission electron microscopy reveals that a defect-free superlattice is achieved for a structure composed of a 20-period sequence of 3 monolayers (ML) Si and 9 ML Ge. High-resolution lattice images and electron diffraction patterns show that the whole structure is matched to the Ge substrate. Experimental values for the tetragonal deformation of the Si layers within the SLS are in good agreement with theory. An equivalent sample containing 120 periods exceeds the critical thickness for pseudomorphic growth of the SLS and shows the formation of twin lamellae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.