Abstract

Cryptophlebia leucotreta granulovirus (CrleGV), a double-stranded DNA virus (genus Betabaculovirus, family Baculoviridae), is highly infective to the citrus insect pest Thaumatotibia leucotreta. The South African isolate CrleGV-SA is formulated into a commercial biopesticide and registered for use in several countries. In South Africa, it is used as a biopesticide in a multi-faceted integrated pest management approach for citrus crops involving chemical and biological control methods. The virus nucleocapsid is surrounded and protected by an occlusion body (OB) composed of granulin protein in a crystalline matrix. Like all other baculoviruses, CrleGV is susceptible to ultraviolet (UV) radiation from sunlight. This reduces its efficacy as a biopesticide in the field and necessitates frequent respraying. UV damage to baculovirus biopesticides is detected by means of functional bioassays. However, bioassays do not give an indication of whether any structural damage has occurred that may contribute to functional loss. In this study, transmission electron microscopy (TEM) was used to observe damage to the OB and nucleocapsid (NC) of CrleGV-SA, following controlled UV irradiation in the laboratory to mimic field conditions. The resultant images were compared with images of non-irradiated CrleGV-SA virus. TEM images of irradiated CrleGV-SA samples revealed changes to the OB crystalline faceting, a reduction in the size of the OBs, and damage to the NC following UV exposure for 72 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call