Abstract

Managing heat transport at nanoscale is an important and challenging task for nanodevice applications and nanostructure engineering. Herein, through in-situ engineering nanowire (NW)-electrode contacts with electron beam induced carbon deposition in a transmission electron microscope, Joule heat dissipation along individual suspended Indium Arsenide NWs is well managed to obtain pre-designed temperature profiles along NWs. The temperature profiles are experimentally determined by the breakdown site of NWs under Joule heating and breakdown temperature measurement. A model with NW-electrode contacts being well considered is proposed to describe heat transport along a NW. By fitting temperature profiles with the model, thermal conductance at NW-electrode contacts is obtained. It is found that, the temperature profile along a specific NW is mainly governed by the relative thermal conductance at the two NW-electrode contacts, which is engineered in experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call