Abstract
In this paper we study the interior transmission problem and transmission eigenvalues for multiplicative perturbations of linear partial differential operator of order $\geq2$ with constant real coefficients. Under suitable growth conditions on the symbol of the operator and the perturbation, we show the discreteness of the set of transmission eigenvalues and derive sufficient conditions on the existence of transmission eigenvalues. We apply these techniques to the case of the biharmonic operator and the Dirac system. In the hypoelliptic case we present a connection to scattering theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.