Abstract
A novel topology control algorithm is proposed here to reduce congestion and overloads, thereby improving security margins in a power network. The proposed heuristic relies on normalized squares of the line currents as a direct indicator of transmission line loading. The sensitivity of this measure with respect to breaker positions forms the basis of the proposed heuristic to select switching actions for a reconfigured network topology that reduces the congestion and overloads while holding generation dispatch essentially fixed. While many prior works have examined this class of problem for line switching actions (i.e., topology changes that insert or remove branches), bus-bar switching actions (topology changes that merge or split nodes/buses) have received less research focus. Here, both line switching and bus-bar switching are implemented using a detailed node-breaker representation of the network. The algorithm adopts a novel form of the AC power flow that allows sparse calculation and reduced computation time. Case studies demonstrate that the proposed approach efficiently reduces congestion and overloads in the base case and in contingency situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.