Abstract

We establish a comparison principle for a Hamilton–Jacobi–Bellman equation, more appropriately a system, related to an infinite horizon problem in presence of an interface. Namely a low dimensional subset of the state variable space where discontinuities in controlled dynamics and costs take place. Since corresponding Hamiltonians, at least for the subsolution part, do not enjoy any semicontinuity property, the comparison argument is rather based on a separation principle of the controlled dynamics across the interface. For this, we essentially use the notion of ε-partition and minimal ε-partition for intervals of definition of an integral trajectory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.