Abstract

AbstractWe propose a new three-dimensional photonic crystal structure or drilled alternating-layer photonic crystal (DALPC), which can be fabricated by a combination of the deposition of alternating layers of dielectric films and one-time dry etching. Our band calculation predicts that the DALPC has a photonic band gap (PBG) in all directions. We fabricated a Si/SiO2 DALPC by electron beam lithography, bias sputtering, and fluoride-gas electron cyclotron resonance etching. We measured the light transmission of the DALPC sample in both the in-plane and vertical directions. We observed a transmission minimum around the 1.4-µm-wavelength for all measured directions and TE/TM polarizations, which demonstrated a potential of the DALPC as a three-dimensional PBG material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.