Abstract

To realize practical wavelength division multiplexing (WDM) systems, a high-performance N/spl times/N wavelength multiplexer is introduced that is based on an arrayed-waveguide grating. Its transmission characteristics are theoretically derived and experimentally confirmed. A prototype is constructed using the previously proposed techniques that attain low insertion loss and polarization independent operation. It has 16 channels (N=16) with a spacing of 0.8 mn, or 100 GHz, in the 1.55-/spl mu/m band. Frequency relation between input and output ports, free spectral range, and passband width are determined. A demonstration of IM-DD pulse transmission shows that there is no degradation of bit error rate resulting from the finite passband width and crosstalk of the multiplexer. It is confirmed that the multiplexer can realize highly reliable N-channel WDM and WDM-based N/spl times/N interconnect optical networks.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.