Abstract

Transmission from single, identified, slowly adapting type II (SAII) tactile fibers to their target neurons in the cuneate nucleus was examined in anesthetized cats. Simultaneous recordings were made from cuneate neurons and from fine, intact fascicles of the superficial radial nerve in which it was possible to identify and monitor the activity of each group II fiber. Selective activation of individual SAII fibers was achieved by means of skin stimulation with fine probes, in conjunction with extensive forelimb denervation. Responses were studied for seven SAII-driven cuneate neurons. For three there was unequivocal monitoring of the identified SAII input fiber. However, in six of the seven there was evidence that just one SAII fiber provided suprathreshold input to the cuneate neuron, and neither temporal nor spatial summation was required for reliable transmission. Cuneate impulse rates, in response to SAII inputs lasting 1 s, were less than 250 impulses per second, even though the SAII impulse rates could be 500 s-1. Responses to individual SAII impulses consisted of a burst of 2-3 impulses at low SAII input rates, but burst responses disappeared at high SAII rates. In all three SAII-cuneate pairs studied, the transmission security (the percentage of SAII impulses that evoked cuneate spike output) exceeded 80% in response to static skin displacement and in response to certain frequencies of skin vibration, in particular, at 100-200 Hz, exceeded 98% when the SAII fiber responded near the 1:1 level (one impulse per vibration cycle).(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call