Abstract
In this paper, upper and lower bounds on the transmission capacity of spread-spectrum (SS) wireless ad hoc networks are derived. We define transmission capacity as the product of the maximum density of successful transmissions multiplied by their data rate, given an outage constraint. Assuming that the nodes are randomly distributed in space according to a Poisson point process, we derive upper and lower bounds for frequency hopping (FH-CDMA) and direct sequence (DS-CDMA) SS networks, which incorporate traditional modulation types (no spreading) as a special case. These bounds cleanly summarize how ad hoc network capacity is affected by the outage probability, spreading factor, transmission power, target signal-to-noise ratio (SNR), and other system parameters. Using these bounds, it can be shown that FH-CDMA obtains a higher transmission capacity than DS-CDMA on the order of M/sup 1-2//spl alpha//, where M is the spreading factor and /spl alpha/>2 is the path loss exponent. A tangential contribution is an (apparently) novel technique for obtaining tight bounds on tail probabilities of additive functionals of homogeneous Poisson point processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.