Abstract

In processes aimed at the fractionation of a multi-component feed stream, transmission of particles through the membrane is at least as important as retention of larger particles. In this paper, we describe the mechanisms of transmission of mono-disperse latex particles through a polymer membrane. The effects of process parameters, such as transmembrane pressure, cross flow velocity and feed concentration were investigated. In dead end filtration mode, we found that, depending on the transmembrane pressure, four particle transmission regimes could be distinguished. Particle deposition on polymer membranes and polymer microsieves was investigated in-line with confocal scanning laser microscopy (CSLM). It was observed that with the polymer membrane random depth deposition took place, while the microsieve exhibited in-pore fouling. In addition, bi-disperse particle suspensions were fractionated with dead end and cross flow membrane filtration, and various effects were charted. Based on the phenomena observed, it is concluded that the design of a fractionation process starts with defining a stable transmission regime for small particles, and subsequently choosing the process conditions for minimal deposition of the larger particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.