Abstract

In this paper, a new energy-regenerative suspension system with a simplified multi-DOF mechanism was proposed. The research firstly focuses on characteristics of the transmission and conversion analysis, and energy recovery calculation. Then the relationship between the vibration amplitude and the rotation angle is computed and simulated. The dead angle of motion is found. A novel parameter K is proposed to describe the outer profile envelope of the linkages for the first time, which provides a potential reduction for the control matrix dimension. A 2-DOF suspension model, integrated with the multi-link rotating electromagnetic regenerative shock absorber, is built, simulated, and analyzed. The kernel simulation results are validated by experiments at last. Driving on Class B road, the results show that the energy-regenerative suspension controlled by the LQG algorithm is 20.56% smaller than the passive suspension in Body Acceleration; the energy regeneration efficiency is 14.28%, and the self-supply efficiency is 54.66%. Comparing to the ball-screw structure, we increase the energy harvesting ratio by 21.43% with similar control effects. The research provides new ideas for suspension design and control, reduces energy consumption, and improves ride comfort and driving stability as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.