Abstract

Malignant melanoma represents the third common cause of brain metastasis, having the highest propensity to metastasize to the brain of all primary neoplasms in adults. Since the central nervous system lacks a lymphatic system, the only possibility for melanoma cells to reach the brain is via the blood stream and the blood-brain barrier. Despite the great clinical importance, mechanisms of transmigration of melanoma cells through the blood-brain barrier are incompletely understood. In order to investigate this question we have used an in vitro experimental setup based on the culture of cerebral endothelial cells (CECs) and the A2058 and B16/F10 melanoma cell lines, respectively. Melanoma cells were able to adhere to confluent brain endothelial cells, a process followed by elimination of protrusions and transmigration from the luminal to the basolateral side of the endothelial monolayers. The transmigration process of certain cells was accelerated when they were able to use the routes preformed by previously transmigrated melanoma cells. After migrating through the endothelial monolayer several melanoma cells continued their movement beneath the endothelial cell layer. Melanoma cells coming in contact with brain endothelial cells disrupted the tight and adherens junctions of CECs and used (at least partially) the paracellular transmigration pathway. During this process melanoma cells produced and released large amounts of proteolytic enzymes, mainly gelatinolytic serine proteases, including seprase. The serine protease inhibitor Pefabloc® was able to decrease to 44–55% the number of melanoma cells migrating through CECs. Our results suggest that release of serine proteases by melanoma cells and disintegration of the interendothelial junctional complex are main steps in the formation of brain metastases in malignant melanoma.

Highlights

  • Malignant melanoma is the third common cause of brain metastasis behind lung and breast cancer, having the highest propensity to metastasize to the brain of all primary neoplasms in adults

  • In order to study the routes and mechanisms of transendothelial migration of melanoma cells we have developed an in vitro model system based on the culture of cerebral endothelial cells and two melanoma cell lines

  • We have observed that A2058 and B16/F10 melanoma cells were able to adhere to rat brain endothelial cells (RBECs) or D3 monolayers in a time dependent manner (Fig. 1)

Read more

Summary

Introduction

Malignant melanoma is the third common cause of brain metastasis behind lung and breast cancer, having the highest propensity to metastasize to the brain of all primary neoplasms in adults. Since the central nervous system (CNS) lacks a lymphatic system, tumor cells can only reach the brain parenchyma by hematogenous metastasis formation. During this process metastatic cells need to traverse brain endothelial cells which in turn form the morphological basis of the blood-brain barrier (BBB). Cerebral endothelial cells (CECs) – coming in contact with pericytes and astrocytes – form a single cell layer lining the blood vessels, and are sealed with a continuous belt of tight junctions (TJs) (for review see: [3]). TJs regulate the paracellular permeability of the endothelial layer and are composed of transmembrane proteins, including occludin, claudins and junctional adhesion molecules, and cytoplasmic plaque proteins which comprise zonula occludens proteins (ZO-1, ZO-2) and associated molecules (for review see: [4]). AJs are composed of transmembrane proteins (cadherins) and cytoplasmic proteins (catenins)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.