Abstract
We recently communicated (Angew. Chem. Int. Ed., 2018, 57, 5917-5920) the transmetallation of [6-Ph2P(O)-Ace-5-]2Hg (1) with Pb(OAc)4, which, after work-up with HCl in Et2O, provided the first aryl lead trichloride, 6-Ph2P(O)-Ace-5-PbCl3 (2), and 6-Ph2P(O)-Ace-5-HgCl (3). With LiCl, 1 forms a complex, [{[6-Ph2P(O)-Ace-5]2Hg}2Li]Cl (1a), that shows no reactivity towards Pb(OAc)4 anymore, which highlights the role of the intramolecularly coordinated P(O) functionality in transmetallation. In this work, we have broadened the scope of the transmetallation reagent by the reaction of 1 with SnCl4, SbCl3 and BiCl3 giving rise to the formation of 6-Ph2P(O)-Ace-5-SnCl3 (4), 6-Ph2P(O)-Ace-5-SbCl2 (5) and 6-Ph2P(O)-Ace-5-BiCl2 (6), respectively. The high Lewis acidity permits 4 and 5 to undergo complexation with THF, whereas no such complexes were formed with 2 and 6. The molecular structures of 1a, 3, 4, 4·THF, 5, 5·THF and 6 were established by X-ray crystallography. The different P-O distances of 2, 4, 4·THF, 5, 5·THF and 6, reflecting the relative strength of the P(O)E coordination (E = Pb, Sn, Sb, Bi), were discussed. The nature of the P(O)E interactions of 2, 4, 4·THF, 5, 5·THF and 6 was studied using a set of real-space bond indicators (RSBIs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.