Abstract

Supported nanoparticulate materials have a variety of uses, from energy storage to catalysis. In preparing such materials, precision control can often be achieved by applying chemical deposition methods. However, ligand removal following the initial deposition presents a substantial challenge because of potential surface contamination. Traditional approaches normally include multistep processing and require a substantial thermal budget. Using transmetalation chemistry, it is possible to circumvent both disadvantages and prepare chemically reactive copper nanoparticles supported on a commercially available ZnO powder material by metalorganic vapor copper deposition followed by very mild annealing to 350 K. The self-limiting copper deposition reaction is used to demonstrate the utility of this approach for hexafluoroacetylacetonate-copper-vinyltrimethylsilane, Cu(hfac)VTMS, reacting with ZnO. The low-temperature transmetalation is confirmed by a combination of spectroscopic studies. Model density functional theory calculations are consistent with a thermodynamic driving force for the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call