Abstract
Sphingoid long-chain base-1-phosphates (LCBPs) are thought to act as intracellular signalling molecules in yeast. Lcb3p is a member of the LCBPs-specific phosphatase family (SPP family). Other yeast phosphatases, Lpp1p and Dpp1p, are members of a different lipid phosphatase family (LPP family) known to exhibit broader substrate specificities. Until now, only the membrane topology of mammalian LPP family members has been reported, whereas that of the SPP family has remained unclear. In our in vitro system, Lcb3p displayed major phosphatase activity against dihydrosphingosine-1-phosphate, while Dpp1p and Lpp1p also exhibited activities. Here, we determined that Lpp1p and Dpp1p exhibit the topology common to the LPP family. Moreover, we examined the transmembrane topology of Lcb3p using a C-terminal reporter approach. From our results we deduced a structural model illustrating that Lcb3p has eight membrane-spanning domains with its highly conserved phosphatase motifs positioned within the endoplasmic reticulum (ER) lumen. Consistent with this result, Lcb3p collected in low speed pellet fractions was highly resistant to exogenous proteinase K unless the membrane was disrupted. Our results suggest that the active site of Lcb3p is located in the ER lumen and, thus, the phosphate group of the LCBP is hydrolysed on the lumenal side.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.