Abstract

Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left-right axis. Initial migration is independent of a Wnt signal that controls later anterior-posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other's role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left-right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.