Abstract

The pH-sensitive, membrane impermeant fluorescence probes 8-hydroxy-1,3,6-pyrenetrisulfonate (pyranine; p K a = 7.2) and 1-naphthol-3,6-disulfonate (Naps p K a = 8.2) can be simultaneously entrapped within the intravesicular aqueous compartment of unilamellar vesicles and reconstituted proteoliposomes, where they function as reliable reporters of the intravesicular pH. Because the two probes are sensitive to pH over different but overlapping ranges, the useful monitoring range for the co-trapped probe pair extends from pH 6.5 to 9. In vesicles pre-equilibrated at a given pH and then subjected to a sudden change in external pH, the rate and extent of the subsequent change in internal pH are identical at all times during the re-equilibration, regardless of which probe is used to monitor the change. However, in reconstituted bacteriorhodopsin proteoliposomes, the size of the transmembrane pH gradient generated in the light always appears greater when pyranine is used to monitor internal pH. This discrepancy can most readily be understood in terms of heterogeneity in the vesicle suspension, with at least two populations of vesicles, one active in proton and one inactive. A simple algorithm was developed which generates, from the observed internal pH changes for two probes of different p K a, the percentage of vesicles which are inactive, as well as the actual internal pH of the active fraction. The applicability of this algorithm was subsequently confirmed using a suspension of vesicles in which the level of heterogeneity was deliberately altered by the addition of various amounts of gramicidin. The apparent transmembrane pH gradient for the vesicle population as a whole decreased with increasing gramicidin, as did the calculated percentage of vesicles able to maintain a pH gradient, while the transmembrane gradient calculated for the active vesicle fraction only was essentially unaffected by gramicidin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.