Abstract

The putative transmembrane segment of the ion channel forming peptide NB from influenza B was synthesized by standard solid-phase peptide synthesis. Insertion into the planar lipid bilayer revealed ion channel activity with conductance levels of 20, 61, 107, and 142 pS in a 0.5 M KCl buffer solution. In addition, levels at -100 mV show conductances of 251 and 413 pS. A linear current-voltage relation reveals a voltage-independent channel formation. In methanol and in vesicles the peptide appears to adopt an alpha-helical-like structure. Computational models of alpha-helix bundles using N = 4, 5, and 6 NB peptides per bundle revealed water-filled pores after 1 ns of MD simulation in a solvated lipid bilayer. Calculated conductance values [using HOLE (Smart et al. (1997) Biophys. J. 72, 1109-1126)] of ca. 20, 60, and 90 pS, respectively, suggested that the multiple conductance levels seen experimentally must correspond to different degrees of oligomerization of the peptide to form channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.