Abstract

The presence of industrially produced chemicals in water is often not monitored, while their passive transport and accumulation can cause serious damage in living cells. Molecular dynamics simulations are an effective way to understand the mechanism of the action of these pollutants. In this paper, the passive membrane transport of 1,4-dioxane, phenol, oxane and morpholine was investigated and analyzed thoroughly from structural and energetic points of view. Free energy profiles for pollutant and water penetration into the bilayer were obtained from well-tempered metadynamics (WT-MD) simulations and a mass density-based approach. It was found that all four investigated compounds can penetrate biological membranes and affect the free energy profile of water penetration. Out of the investigated species, oxane has the thermodynamically most preferred position in the bilayer center, leading to a lower free energy barrier of water molecules by 3 kJ mol-1, resulting in 5 times more water molecules in the bilayer center. The concentration dependence of free energy was tested at two different phenol concentrations using WT-MD, and it was found that the higher phenol concentration lowers the main barrier by 3 kJ mol-1. Density-based free energy calculations were found to reproduce the results of WT-MD within the limits of chemical accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.