Abstract

Transmembrane MUC18 is highly expressed on most metastatic cancers. Herein, we demonstrate that targeting MUC18 with polydopamine nanoparticles (PDA NPs) and a mild photothermal effect can completely cease the migration of melanoma and breast cancer cells without killing the cells. The inhibited cell migration can be attributed to the altered actin cytoskeleton, cell stiffness, and cell morphology, as revealed by nanomechanical and super resolution fluorescence imaging techniques. Further mechanistic studies at the molecular level show that MUC18 targeted PDA NPs and a mild photothermal treatment produce a synergistic effect on the actin cytoskeleton by downregulating the transmembrane MUC18 and interrupting ezrin-radixin-moesin phosphorylation, thereby releasing the actin cytoskeleton from the cell membrane and compromising force transduction through the actin cytoskeleton to the transmembrane MUC18. Overall, the concept of targeting transmembrane metastatic markers and disrupting their downstream effectors (i.e., actin and actin-binding proteins) opens up a new avenue to cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call