Abstract

In recent years, targeting tumor angiogenesis has emerged as a prominent research focus in the treatment and prevention of tumor expansion. A7R (ATWLPPR) exhibits high affinity and specificity for VEGFR-2, which is overexpressed in various tumors. To enhance the tumor tissue and cell penetration capabilities of A7R, we substituted its non-critical amino acid with Arginine (R) and Glutamic acid (E), cyclized the mutant peptide, and linked it to the membrane permeation sequence using coordination principles. We designed and synthesized fifteen novel penetrating peptides that target tumor blood vessels and cells, followed by conducting various biological evaluations and cell imaging experiments. The results demonstrated that Cyclo-A7R-RRR and A7R-RLLRLLR exhibited excellent permeability towards tumor cells, with Cyclo-A7R-RRR showing superior serum stability compared to A7R. Furthermore, the modified peptides showed no toxicity towards HeLa cells, U251 cells, HuH-7 cells, and HEK293 cells under 10 μmol/L. Utilizing Cyclo-A7R-RRR or A7R-RLLRLLR for transmembrane delivery of drug molecules could significantly improve their efficacy. Our findings broaden the potential application scenarios of A7R in targeted tumor angiogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.