Abstract

B cells that accumulate in the synovial tissue of rheumatoid arthritis (RA) patients revise their receptors due to coordinate expression of recombination-activating gene 1 (RAG-1) and RAG-2 genes. The aim of this study was to determine the mechanisms that control this re-expression. B cells from healthy control subjects were cocultured with fibroblast-like synoviocytes (FLS) from patients with RA and osteoarthritis (OA). Re-expression of RAG messenger RNA (mRNA) and proteins was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and indirect immunofluorescence. Activity of RAG enzymes was evaluated by flow cytometry to measure variations in immunoglobulin kappa and lambda light chain expression and by ligation-mediated-PCR to assess specific DNA breaks. Blocking antibodies, short hairpin RNA, and recombinant cytokine were used to identify the molecules involved in RAG re-expression. RA FLS, but not OA FLS, induced B cells to re-express RAG mRNA and proteins. Enzymes were functional, since the kappa-to-lambda ratios decreased and specific DNA breaks were detectable after coculture with RA FLS. Transmembrane BAFF provided the first signal of RAG re-expression, since its down-regulation in RA FLS prevented RAG gene transcription in B cells. The failure of transmembrane BAFF from OA FLS to induce RAG suggests that a second signal was provided by RA FLS. Interleukin-6 (IL-6) is a candidate, since blockade of its receptors precluded transcription of RAG genes by RA FLS. Unless supplemented with IL-6, OA FLS were unable to induce RAG gene expression in normal B cells. Two independent signals are required for the induction of RAG gene expression in B cells that infiltrate the synovium of patients with RA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call