Abstract

In this work we study the presence of both a minimum and clear oscillations in the frequency dependence of the translocation time of a polymer described as a unidimensional Rouse chain driven by a spatially localized oscillating linear potential. The observed oscillations of the mean translocation time arise from the synchronization between the very mean translocation time and the period of the external force. We have checked the robustness of the frequency value for the minimum translocation time by changing the damping parameter, finding a very simple relationship between this frequency and the correspondent translocation time. The translocation time as a function of the polymer length has been also evaluated, finding a precise L2 scaling. Furthermore, the role played by the thermal fluctuations described as a gaussian uncorrelated noise has been also investigated, and the analogies with the resonant activation phenomenon are commented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call