Abstract

The translocation time of a polymer chain through an interaction energy gradient nanopore was studied by Monte Carlo simulations and the Fokker–Planck equation with double-absorbing boundary conditions. Both the simulation and calculation revealed three different behaviors for polymer translocation. These behaviors can be explained qualitatively from free-energy landscapes obtained for polymer translocation at different parameters. Results show that the translocation time of a polymer chain through a nanopore can be tuned by suitably designing the interaction energy gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call