Abstract

The use of functional DNA nanostructures as carriers to ship proteins through solid-state nanopores has recently seen substantial growth in single-protein-molecule detection (SPMD), driven by the potential of this methodology and implementations that it may enable. Ultrasmall nanopores have exhibited obvious advantages in spatiotemporal biological detection due to the appropriate nanoconfined spaces and unique properties. Herein, a 6.8 nm DNA tetrahedron (TDN) with a target-specific DNA aptamer (TDN-apt) was engineered to carry the representative target of acetylcholinesterase (AChE) through an ultrasmall nanopipet with a 30 nm orifice, underpinning the advanced SPMD of AChE with good performance in terms of high selectivity, low detection limit (0.1 fM), and especially superior signal-to-noise ratio (SNR). The kinetic interaction between TDN-apt and AChE was studied and the practical applicability of the as-developed SPMD toward real samples was validated using serum samples from patients with Alzheimer's disease. This work not only presented a feasible SPMD solution toward low-abundance proteins in complex samples and but also was envisioned to inspire more interest in the design and implementation of synergized DNA nanostructure-ultrasmall nanopore systems for future SPMD development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.