Abstract
The effect of acidic pH on the translocation of single-stranded DNA through the α-hemolysin pore is investigated. Two significantly different types of events, i.e. deep blockades and shallow blockades, are observed at low pH. The residence times of the shallow blockades are not significantly different from those of the DNA translocation events obtained at or near physiological pH, whereas the deep blockades have much larger residence times and blockage amplitudes. With a decrease in the pH of the electrolyte solution, the percentage of the deep blockades in the total events increases. Furthermore, the mean residence time of these long-lived events is dependent on the length of DNA, and also varies with the nucleotide base, suggesting that they are appropriate for use in DNA analysis. In addition to being used as an effective approach to affect DNA translocation in the nanopore, manipulation of the pH of the electrolyte solution provides a potential means to greatly enhance the sensitivity of nanopore stochastic sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.