Abstract

The objective of this study was to determine if immunosuppression through daily dexamethasone (DEX) infusion altered Salmonella translocation from the gastrointestinal tract. Weaned Holstein steers (n = 20; body weight [BW] = 102 ± 2.7 kg) received DEX (n = 10; 0.5 mg/kg BW) or saline (control [CON]; n = 10;) for 4 days (from day -1 to 2) before oral inoculation of naldixic acid-resistant Salmonella enterica Typhimurium (SAL; 3.4 × 106 colony-forming units [CFU]/animal) on day 0. Fecal swabs were obtained daily, and blood was collected daily for hematology. At harvest (day 5), ileum, cecal fluid, lymph nodes (ileocecal, mandibular, popliteal, and subscapular), and synovial (stifle, coxofemoral, and shoulder) samples were collected for isolation of the inoculated strain of SAL. White blood cell (WBC) and neutrophil concentrations were elevated (p < 0.01) in DEX calves following each administration event. Following inoculation, 100% of DEX calves shed the experimental strain of SAL for all 5 days, 90% of CON calves shed from day 1 to 3, and 100% of CON calves shed from day 4 to 5. Greater (p < 0.01) concentrations of SAL were quantified from the cecum of DEX calves (3.86 ± 0.37 log CFU/g) compared with CON calves (1.37 ± 0.37 log CFU/g). There was no difference in SAL concentrations between DEX and CON calves in ileal tissue (p = 0.07) or ileocecal (p = 0.57), mandibular (p = 0.12), popliteal (p = 0.99), or subscapular (p = 0.83) lymph nodes. Of the stifle samples collected, 3.3% were positive for SAL, highlighting a contamination opportunity during hindquarter breakdown. While more research is needed to elucidate the interactions of immunosuppression and pathogen migration patterns, these data confirm that orally inoculated SAL can translocate from the gastrointestinal tract and be harbored in atypical locations representing a food safety risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.