Abstract
BackgroundThe lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation. Thus great efforts are currently being made to determine adverse health effects associated with inhalation of NPs. However, to date very little is known about factors that determine the pulmonary translocation of NPs and their subsequent distribution to secondary organs.MethodsA novel two-step approach to assess the biokinetics of inhaled NPs is presented. In a first step, alveolar epithelial cellular monolayers (CMLs) at the air-liquid interface (ALI) were exposed to aerosolized NPs to determine their translocation kinetics across the epithelial tissue barrier. Then, in a second step, the distribution to secondary organs was predicted with a physiologically based pharmacokinetic (PBPK) model. Monodisperse, spherical, well-characterized, negatively charged gold nanoparticles (AuNP) were used as model NPs. Furthermore, to obtain a comprehensive picture of the translocation kinetics in different species, human (A549) and mouse (MLE-12) alveolar epithelial CMLs were exposed to ionic gold and to various doses (i.e., 25, 50, 100, 150, 200 ng/cm2) and sizes (i.e., 2, 7, 18, 46, 80 nm) of AuNP, and incubated post-exposure for different time periods (i.e., 0, 2, 8, 24, 48, 72 h).ResultsThe translocation kinetics of the AuNP across A549 and MLE-12 CMLs was similar. The translocated fraction was (1) inversely proportional to the particle size, and (2) independent of the applied dose (up to 100 ng/cm2). Furthermore, supplementing the A549 CML with two immune cells, i.e., macrophages and dendritic cells, did not significantly change the amount of translocated AuNP. Comparison of the measured translocation kinetics and modeled biodistribution with in vivo data from literature showed that the combination of in vitro and in silico methods can accurately predict the in vivo biokinetics of inhaled/instilled AuNP.ConclusionOur approach to combine in vitro and in silico methods for assessing the pulmonary translocation and biodistribution of NPs has the potential to replace short-term animal studies which aim to assess the pulmonary absorption and biodistribution of NPs, and to serve as a screening tool to identify NPs of special concern.Electronic supplementary materialThe online version of this article (doi:10.1186/s12989-015-0090-8) contains supplementary material, which is available to authorized users.
Highlights
The lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation
The particles which were produced cover the whole nano-range (1–100 nm [40]) and are highly stable: the nebulization in the air-liquid interface cell exposure (ALICE) does not alter the size of the Gold nanoparticles (AuNP), and we did not determine a considerable amount of gold below 30 kDa in the basolateral medium 24 h after the exposure in the ALICE, the dissolution of particles in the transwell chamber system is insignificant
cellular monolayers (CMLs) characterization Laser scanning microscopy (LSM) images of A549 and MLE-12 CMLs after 24 h at the air-liquid interface (ALI) and 24 h postexposure are depicted in Fig. 3a-d (LSM images 48 and 72 h post-exposure are provided in Additional file 1)
Summary
The lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation. The nanomaterials can deposit on the lung surface and be displaced into the aqueous lining layer, where they may interact with epithelial cells [8, 9]. The most permeable epithelial barrier is located in the deep lung, lining the alveoli [10]. Little is known about the systemic effects of inhaled NPs, considering that the alveoli have the most permeable epithelial barrier of all uptake routes, and, inhaled NPs have been shown to reach the systemic circulation [19,20,21,22,23,24,25,26]. The factors that enable and determine the pulmonary translocation and biodistribution of NPs are presently largely unknown
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.