Abstract

We investigate the translocation of a single-stranded DNA through a pore which fluctuates between two conformations, using coupled master equations. The probability density function of the first passage times of the translocation process is calculated, displaying a triple-, double-, or monopeaked behavior, depending on the interconversion rates between the conformations, the applied electric field, and the initial conditions. The cumulative probability function of the first passage times, in a field-free environment, is shown to have two regimes, characterized by fast and slow timescales. An analytical expression for the mean first passage time of the translocation process is derived, and provides, in addition to the interconversion rates, an extensive characterization of the translocation process. Relationships to experimental observations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.