Abstract
Downstream stable mRNA secondary structures can stall elongating ribosomes by impeding the concerted movements of tRNAs and mRNA on the ribosome during translocation. The addition of a downstream mRNA structure, such as a stem-loop or a pseudoknot, is essential to induce -1 programmed ribosomal frameshifting (-1 PRF). Interestingly, previous studies revealed that -1 PRF efficiencies correlate with conformational plasticity of pseudoknots, defined as their propensity to form incompletely folded structures, rather than with the mechanical properties of pseudoknots. To elucidate the detailed molecular mechanisms of translocation and -1 PRF, we applied several smFRET assays to systematically examine how translocation rates and conformational dynamics of ribosomes were affected by different pseudoknots. Our results show that initial pseudoknot-unwinding significantly inhibits late-stage translocation and modulates conformational dynamics of ribosomal post-translocation complexes. The effects of pseudoknots on the structural dynamics of ribosomes strongly correlate with their abilities to induce -1 PRF. Our results lead us to propose a kinetic scheme for translocation which includes an initial power-stroke step and a following thermal-ratcheting step. This scheme provides mechanistic insights on how selective modulation of late-stage translocation by pseudoknots affects -1 PRF. Overall our findings advance current understanding of translocation and ribosome-induced mRNA structure unwinding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.