Abstract

Chloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of many proteins, such as human epidermal growth factor (hEGF), results hindered by post-transcriptional mechanisms. hEGF degradation has been related to the redox potential of the stroma and protein misfolding. To solve this problem, we proposed the redirection of hEGF into the thylakoid lumen where the environment could improve disulfide bonds formation stabilizing the functional conformation of the protein. We generated transplastomic tobacco plants targeting hEGF protein to the thylakoid lumen by adding a transit peptide (Str). Following this approach, we could detect thylakoid lumen-targeted hEGF by western blotting while stromal accumulation of hEGF remained undetectable. Southern blot analysis confirmed the integration of the transgene through homologous recombination into the plastome. Northern blot analysis showed similar levels of egf transcripts in the EGF and StrEGF lines. These results suggest that higher stability of the hEGF peptide in the thylakoid lumen is the primary cause of the increased accumulation of the recombinant protein observed in StrEGF lines. They also highlight the necessity of exploring different sub-organellar destinations to improve the accumulation levels of a specific recombinant protein in plastids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.