Abstract

Cytotoxic activity of most chemotherapeutic agents is based on their ability to induce DNA damage. Interstrand crosslinks are among the most detrimental forms of DNA damage as both DNA strands are affected. As translesion polymerases participate in their repair, they may be important for response to chemotherapeutic agents that induce such lesions, including commonly used cisplatin. Altered expression of translesion polymerase genes REV1 and REV3L may modify sensitivity to cisplatin. As osteosarcoma patients are commonly treated with cisplatin-based chemotherapy, our aim was to investigate if REV1 and REV3L polymorphisms influence survival of osteosarcoma patients treated with cisplatin-based chemotherapy. We determined the genotypes of common functional tag REV1 and REV3L polymorphisms in 66 osteosarcoma patients. Cox regression was used for survival analysis. Carriers of at least one polymorphic REV1 rs3087403 allele had significantly shorter EFS and overall survival (OS) (p = 0.004; HR = 3.79; 95%CI = 1.53-9.35 and p < 0.001; HR = 4.44; 95%CI = 1.92-10.27, respectively). Combination of REV1 rs3087403 and REV3L rs462779 polymorphisms was also significantly associated with shorter OS (ptrend<0.001) and shorter EFS (ptrend = 0.003). The results of this first study on polymorphisms in translesion polymerase genes in osteosarcoma suggest they could help predict outcome of cisplatin-based chemotherapy in osteosarcoma patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.