Abstract

Risk portfolio optimization, with translation-invariant and positive-homogeneous risk measures, leads to the problem of minimizing a combination of a linear functional and a square root of a quadratic functional for the case of elliptical multivariate underlying distributions. This problem was recently treated by the authors for the case when the portfolio does not contain a riskless component. When it does, however, the initial covariance matrix Σ becomes singular and the problem becomes more complicated. In the paper we focus on this case and provide an explicit closed-form solution of the minimization problem, and the condition under which this solution exists. The results are illustrated using data of 10 stocks from the NASDAQ Computer Index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.