Abstract

Spin models are widely studied in the natural sciences, from investigating magnetic materials in condensed matter physics to studying neural networks. Previous work has demonstrated that there exist simple classical spin models that are universal: they can replicate—in a precise and rigorous sense—the complete physics of any other classical spin model, to any desired accuracy. However, all previously known universal models break translational invariance. In this paper we show that there exist translationally invariant universal models. Our main result is an explicit construction of a translationally invariant, 2D, nearest-neighbour, universal classical Hamiltonian with a single free parameter. The proof draws on techniques from theoretical computer science, in particular recent complexity theoretic results on tiling problems. Our results imply that there exists a single Hamiltonian which encompasses all classical spin physics, just by tuning a single parameter and varying the size of the lattice. We also prove that our construction is optimal in terms of the number of parameters in the Hamiltonian; there cannot exist a translationally invariant universal Hamiltonian with only the lattice size as a parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.