Abstract
The primary structures of peptides may be adapted for efficient synthesis as well as proper function. Here, the Saccharomyces cerevisiae genome sequence, DNA microarray expression data, tRNA gene numbers, and functional categorizations of proteins are employed to determine whether the amino acid composition of peptides reflects natural selection to optimize the speed and accuracy of translation. Strong relationships between synonymous codon usage bias and estimates of transcript abundance suggest that DNA array data serve as adequate predictors of translation rates. Amino acid usage also shows striking relationships with expression levels. Stronger correlations between tRNA concentrations and amino acid abundances among highly expressed proteins than among less abundant proteins support adaptation of both tRNA abundances and amino acid usage to enhance the speed and accuracy of protein synthesis. Natural selection for efficient synthesis appears to also favor shorter proteins as a function of their expression levels. Comparisons restricted to proteins within functional classes are employed to control for differences in amino acid composition and protein size that reflect differences in the functional requirements of proteins expressed at different levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.